Beyond the Instrument: How to Manage and Master Your Core Facility Data

Aarya Vaikakkara Chithran, Ph.D.

Research Scientist
Microscopy and Histopathology CoLab
Seattle Children's Research Institute

Overview of Seattle Children's Research Institute

Core Services

Shared Research Resources (SRR)

- ABSL-3 Core Facility
- Behavioral Phenotyping Core
- Flow Cytometry Core
- Genomics and Spatial Biology CoLab
- Microscopy and Histopathology CoLab
- Preclinical Imaging Core

Center Support Services

- Research IT
 - Research Storage Services (RSS)
- Research Informatics
 - Research Scientific Computing
 - High Performance Computing Core
 - Bioinformatics Collaboration and Consultation

Overview of Seattle Children's Research Institute

Core Services

Shared Research Resources (SRR)

- ABSL-3 Core Facility
- Behavioral Phenotyping Core
- Flow Cytometry Core
- Genomics and Spatial Biology CoLab
- Microscopy and Histopathology CoLab
- Preclinical Imaging Core

Research Centers

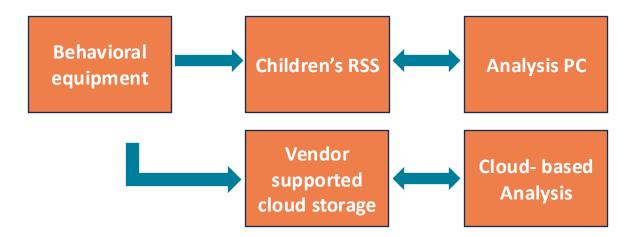
Center
Support
Services

- Research IT
 - Research Storage Services (RSS)
- Research Informatics
 - Research Scientific Computing
 - High Performance Computing Core
 - Bioinformatics Collaboration and Consultation

Data Workflow in SRR

Core Services

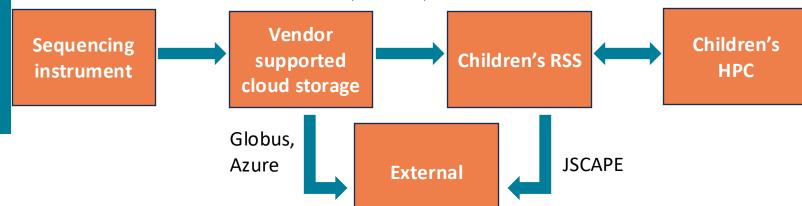
Shared Research Resources (SRR)


- ABSL-3 Core Facility
- Behavioral Phenotyping Core
- Flow Cytometry Core
- Genomics and Spatial Biology CoLab
- Microscopy and Histopathology CoLab
- Preclinical Imaging Core

Data Workflow in SRR

Behavioral Phenotyping Core (BPC)

- Data type: Behavioral videos (few hours to > 24 hours)
- Data size: ~2 TB/ day
- Data storage: AWS cloud (integrated with Allentown Inc.) → Children's RSS
- Data Analysis: Machine-Learning; High-end PC with a dedicated graphics card



Data Workflow in SRR

Genomics and Spatial Biology CoLab (GSB)

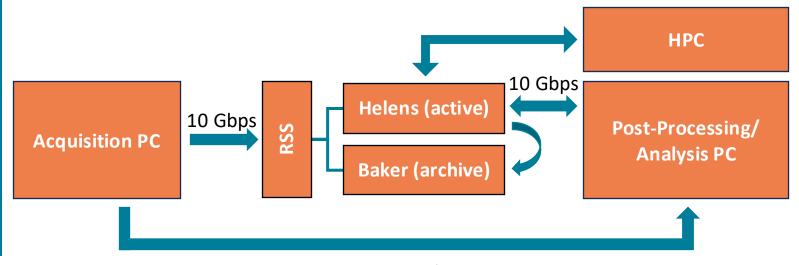
- Data type: Sequencing data from Illumina/ PacBio instruments
- Data size: ~10 GB- 1 TB per file
- Data storage: Instrument cloud → Children's RSS
- Data Analysis: Children's HPC
- External Transfer: Globus Connect, JSCAPE, Azure

Data Generation > Data Processing > Data AnalysisData Storage + Transfer

Data Generation > Data Processing > Data AnalysisData Storage + Transfer

Instrument	Avg. Raw data	Usage
Zeiss LSM 900 (Airyscan) Confocal	1- 80 GB	3-4 users per day; 8- 10 hours per day
Zeiss LSM 980 (Airyscan) Confocal	1- 80 GB	3-4 users per day; 8- 10 hours per day
Zeiss Axioscan 7 slide scanner	2- 20 GB	20-100 slides per week
LifeCanvas SmartSPIM light-sheet	1 TB	moderate- heavy usage
ImageXpress Nano High-Content Imager		Low-moderate usage
CSU W1 SoRa Spinning disk Confocal		moderate- heavy usage

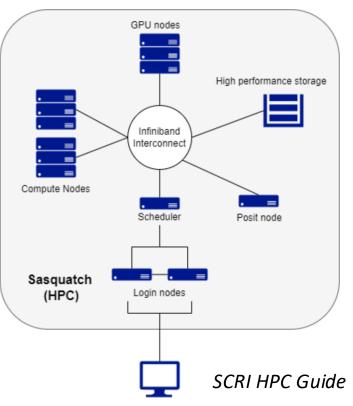
Why use HPC for microscopy data?


- Explosion in data volume and complexity (increasing > 5x in recent years)
- Growing demand for rapid analysis and sharing
- Need for scalable, reliable infrastructure

HPC can:

- Handle large-scale processing (TB-scale datasets)
- Accelerate image analysis workflows (segmentation, registration, AI)
- Faster turnaround for users
- Enable automated, reproducible workflows
- Better sharing and collaborative access

Data Generation > Data Processing > Data AnalysisData Storage + Transfer


Direct Processing during acquisition via 10 Gig connection

Data Generation > Data Processing > Data AnalysisData Storage + Transfer Helens (active) HPC RSS Baker (archive) Light-sheet **Acquisition PC** For long-term **Direct Processing** via 10 Gig 25 Gbps **Short-term Data Post-Processing PC Cloud Storage** (De-striping, Stitching) Storage 'MOSAIC' For long-term 25 Gbps **Analysis PC**

HPC Workflow

- Onboarding to request an account
- Orientation and Training
- Connect to HPC (login nodes)
 - Home directory (100 GB)
 - Association directory (1 TB increments)
- Transfer data from RSS to HPC (not queued)
- Use Slurm for scheduling (jobs are queued)
 - Determine the resources required
 - CPU, GPU, memory, time
- Job dispatched to one or more of the nodes
- Job completed- output written to the specified subfolder in association directory
- Transfer analyzed data to RSS

Using HPC for Microscopy Data

Use Case 1: 3D/ 4D/ 5D Confocal analysis

- Large screen of >800 mutants
- High-content imaging of several 384-well plates
 - 10+ ROIs per well
 - Multichannel z-stacks; time series
- Repetitive pipeline (masking, filter, segmentation, quantification of 5+ parameters)
- Ideal for containerized batch analysis on HPC
- 1.3 million cell instances segmented per day on HPC
- 30 experiments run parallel for analysis

Using HPC for Microscopy Data

Use Case 2: Light-sheet Imaging

- 1 TB per sample
- Destriping, stitching, tile correction, atlas registration
- Too slow and resource heavy on local machines

Pilot project

- Identify workflows common to all users (post-processing of light-sheet data)
 - Destriping using 'Pystripe'
 - Stitching using 'TeraStitcher'
- Deploy shared storage + processing containers
- Evaluate usage and impact → scale as needed

Integration Challenges

Data Transfer Bottlenecks

 Slow data transfer speeds from acquisition/ RSS to HPC storage creates workflow delays.

Workflow Compatibility

- Many microscopy tools are Windows-only or GUI-based, while HPC environments are typically Linux and CLI-based.
- Software requiring **proprietary licenses** may not be easily portable to HPC.

Usability Gap

- Most users are more comfortable with GUIs, but HPC access often requires command-line skills.
- Limited coding experience makes it hard for users to optimize or build pipelines on their own.

Progress & Lessons Learned

Progress made:

- Direct Processing Pipelines via 10 Gbps
- Established **25 Gbps** dedicated link for light-sheet data transfer
- Launched specialized **image analysis workshops** (Python scripts) for researchers
- Identified pilot projects for HPC integration

Lessons learned:

- Core's Responsibility: Bridge the Gap. We must translate researcher needs to IT requirements and vice versa.
- The Partnership Model: Make IT your best friend. Ongoing discussions with Research Support Services (RSS) and HPC are crucial for policy and infrastructure.
- Actionable Start: Create and deploy basic, common pipelines (e.g., deconvolution, batch processing) to immediately lower the barrier to entry.

"People. Ideas. Technology – in that order." -attributed to John Boyd

Hope. Care. Cure.