

Maximizing Core Impact with Metrics Integration & Effective Communications

Julie Auger, Salk Institute for Biological Studies
Craige Mazur, Oregon Health & Science University
Andy Chitty, Oregon Health & Science University

"Be Brief, Be Brilliant, Be Gone"

Jeffrey Bluestone CEO & Co-founder Sonoma Biotherapeutics

- President Woodrow Wilson
- 8 July 1918

Be Brief: succinctly define the goal to be achieved and be economic with your word choice (less is more for busy executives).

Be Brilliant/Bold: be intentional and select the words that allow you to clearly relay the impact (who and what will benefit).

Use data-driven approaches when appropriate.

Be Gone: don't linger over "what if's"

Who are you appealing to?

- Understand what drives decisions
- Appeal to the goal of the decision maker

globalbioimaging.org

Key Performance Indicators (KPIs)

Top 10 KPIs

INFRASTRUCTURE AND PERSONNEL

- Personnel
- 2. Infrastructure (instruments/software/services)

FACILITY PERFORMANCE

- Facility Users
- Diversity of Users/Quality of Training
- User Training
- 6. User Satisfaction
- 7. Publications (Facility Staff and Facility Users)
- Collaborative Publications (Facility Staff and Users)

FINANCIAL PERFORMANCE

- Charge Back Revenue (User Fees)
- 10. Grant Funding

Key Performance Indicators (KPIs)

The KPI list is structured to provide a **definition** and **description** of the KPI, along with an **indication of the level of complexity to measure each KPI** from an imaging facility's perspective.

Green - relatively easy to measure or collection information

Yellow - moderate difficulty to measure or collect information

Red - difficult to measure or collect information

FACILITY PERFORMANCE

3 Facility Users

User Base

The main mission of an infrastructure is to give access to users. It is essential to evaluate the evolution of their usage over time. Regular monitoring helps anticipate future planning challenges such as access allocations when use increases or forecasting financial issues should usage decrease.

Measurement Example: number of users month/instrument/ service, % time of usage per user/month/instrument, number or different types of users (Pls/industry users/graduate students)

Progression of User Base

It is important to measure how the facility changes/progresses over time.

Measurement Example: measured annually, number of internal academic users (Pls/researchers/graduate students), number of external academic users (Pls/researchers/graduate students), number of industry users (trained on equipment or full service projects)

Socio-Economic Indicators (SEIs)

Top 10 SEIs

RESOURCES

- Open Data Sharing
- 2. Standards and Quality Management
- 3. Education Resources for the Larger Community
- 4. Expert Advice to Support Public Policies
- 5. Public Education

HIGHLY QUALIFIED PERSONNEL

- 6. Imaging Scientists
- 7. Career/Job Creation

COLLABORATION

- 8. Collaboration with Industry/Intellectual Property
- 9. Industry Investments

PUBLIC VISIBILITY

10. Media

Publications The Story of Elusive Acknowledgements

The Requestor Approach

The Simplified Approach

Research Resource Identifiers (RRID)

RRIDs are unique numbers assigned to research resources including core facilities, antibodies, model organisms, etc. They help researchers simplify proper citation and authentication for resources utilized, and help to improve transparency of research methods.

University Shared Resource Cores support this initiative and have assigned an RRID to every Core.

In recognition to USR Cores' contributions, we request researchers include Core Names and associated RRIDs in your manuscript's "Acknowledgements Section."

Please copy and paste the Core Name and RRID

Advanced Computing Center (RRID: SCR_009959)

Advanced Imaging Research Center (RRID: SCR 009960) Advanced Light Microscopy Core (RRID: SCR_009961)

Bioanalytical Shared Resource/Pharmacokinetics Core (RRID: SCR_009963)

Biostatistics and Design Program (RRID: SCR_022741)

Biophysics Core (RRID: SCR 022744)

Center for Radiochemistry Research (RRID: SCR 022745)

The Incentivized Approach

Acknowledge Our Core

and get...

RRID: SCR-00123

The Authoritative Approach

Dear Principal Investigator,

We hereby inform you that all award funds will be withheld unless every core utilized for your research is acknowledged.

Sincerely, The Management

Why Don't Authors Acknowledge Cores?

- 1. Requires mindset & culture change?
- 2. Incentives are not enough incentive?
- Insensitivity?
- 4. Forgetful?
- 5. Your reason here: _____
- 6. Another reason here: _____
- 7. _____

The Reframe

Publications A Believable Story of Core-Supported Published Articles

The Bold (and potentially controversial) Proclamation

When a core is used during the course of an investigation

for generating data, images, samples, sequences, analyses, etc.,

the resulting science "products" provide valuable publication contributions,

even if they are not directly used in published articles.

And thus, the core *may* be considered a publication contributor.

The Bold (and potentially controversial) Proclamation

In other words:

If a core collaborates with researchers on a project that results in a published article, the core may reasonably conclude that their efforts have provided valuable scientific input to the article.

Consider and evaluate: Core services MAY have been relevant!

- Was core experiment successful or a bust?
- Did the researcher only purchase supplies?
- Did researcher only spend \$40 in the Massively Parallel Sequencing Core?
- Etc.

The OHSU Data Journey

From Awards to Cores to Publications

- 1. Agency Award Number
- 2. Finance department issues in
- 3. Core services paid via Alias i
- 4. Data exported from iLab (cor
- 5. Join iLab dataset with Agenc
- 6. Scopus Query: Select article
- 7. SCOPUS RESULTS: Publish
- 8. Join Scopus results with iLak
 - Published articles + award num
- 9. Provide result set to Core Dir
 - 1. Set reasonable minimum dollar
 - 2. Verify & validate
 - Include in metrics

criteria)

Titles, Agency Award Number

The DATA!

Core Name	Doi	Pubmed Id	Author Names	Publication Name	Title	Year of Cov	
Advanced Light Micros	https://doi.org/10.1073/pnas.1317528110	24127608	Chai, Sunghee; Cambronne, Xiaolu A.; E.	. Proceedings of the National Acad	MicroRNA-134 activity in somatostati	2013	\$2,525
Advanced Light Micros	https://doi.org/10.1073/pnas.1411713112	25775507	Sun, Xiao Xin;He, Xia;Yin, Li;Komada,	Proceedings of the National Acad	. The nucleolar ubiquitin-specific prote	2015	\$101
Advanced Light Micros	https://doi.org/10.1073/pnas.1612835113	27791031	Fu, Xiaoyong;Jeselsohn, Rinath;Pereir.	. Proceedings of the National Acad	FOXA1 overexpression mediates endo	2016	\$510
Advanced Light Micros	https://doi.org/10.1073/pnas.1802932115	30305424	Suna, Xiao Xin:Chena, Yingxiao:Sua, Y.,	Proceedings of the National Acad.	SUMO protease SENP1 deSUMOvlates	2018	\$5,447
Advanced Light Micros	https://doi.org/10.1073/pnas.1808626115	30518560	Doh, Julia K.;White, Jonathan D.;Zane,.	. Proceedings of the National Acad	VIPER is a genetically encoded peptid	2018	\$11,915
Advanced Light Micros	https://doi.org/10.1073/pnas.1821227116	31085654	Hendricks, William D.;Westbrook, Gar	Proceedings of the National Acad	. Early detonation by sprouted mossy fi	2019	\$1,520
Advanced Light Micros	https://doi.org/10.1073/pnas.2018770118	33972422	Lin, Tzu Huai;Bis-Brewer, Dana M.;She.	. Proceedings of the National Acad	TSG101 negatively regulates mitocho	2021	\$558
Advanced Light Micros	https://doi.org/10.1073/pnas.2209565119	36306331	Hong, Hui;Zeppenfeld, Douglas;Trusse.	. Proceedings of the National Acad	. Electrical signaling in cochlear efferen	2022	\$9,078
Advanced Light Micros	https://doi.org/10.1074/jbc.M113.533109	24403071	Li, Yuhuang;Sun, Xiao Xin;Elferich, Joh.	. Journal of Biological Chemistry	Monoubiquitination is critical for ovar	2014	\$101
Advanced Light Micros	https://doi.org/10.1074/jbc.M114.634576	25637631	Devaraneni, Prasanna K.;Olson, Erik M.	. Journal of Biological Chemistry	Structurally distinct ligands rescue bi	2015	\$5,556
Advanced Light Micros	https://doi.org/10.1074/jbc.RA119.008781	31471317	Melly, Geoff C.;Stokas, Haley;Dunaj, J	Journal of Biological Chemistry	Structural and functional evidence th	2019	\$502

The DATA!

394 rows → ✓ Show aliases ✓ Show a	ll fields					Copy Export All
Payment Information	PI Email	Project Number - iLab	Purchase Date	P R	Service ID	Service Name
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	11/25/2020		ALM-AS-10421	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	11/25/2020		ALM-AS-10421	Stefanie Kaech Petrie (Stefanie Kaech Petrie)
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/2/2020		ALM-AS-10477	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/7/2020		ALM-AS-10477	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/9/2020		ALM-AS-10477	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/21/2020		ALM-AS-10477	Spinning Disk – Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/22/2020		ALM-AS-10477	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/2/2020		ALM-AS-10477	Hannah Bronstein (Hannah Bronstein)
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/7/2020		ALM-AS-10477	Hannah Bronstein (Hannah Bronstein)
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	12/9/2020		ALM-AS-10477	Hannah Bronstein (Hannah Bronstein)
90256172 – GBMEN0308D–GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	2/24/2021		ALM-AS-10841	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	3/2/2021		ALM-AS-10951	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	3/2/2021		ALM-AS-10951	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 – GBMEN0308D–GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	3/3/2021		ALM-AS-10951	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	3/19/2021		ALM-AS-10951	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 – GBMEN0308D–GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	3/25/2021		ALM-AS-10951	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup
90256172 - GBMEN0308D-GBMEN0308D	beattyk@ohsu.edu	GBMEN0308D	3/25/2021		ALM-AS-10951	Spinning Disk - Zeiss/Yokogawa CSU-X1 Setup

The DATA!

1	1		1			
Unit of Measure	Usage Type	User Login Email	Core ID	Price	Quantity	Total Price
hour	Training	suyama@ohsu.edu	Null	96.2400	1.00000	96.240
hour	Weekdays	suyama@ohsu.edu	Null	0.0000	1.00000	0.000
hour	Training	suyama@ohsu.edu	Null	96.2400	1.00000	96.240
hour	Training	suyama@ohsu.edu	Null	96.2400	1.00000	96.240
hour	Peak Hours	suyama@ohsu.edu	Null	29.5000	1.50000	44.250
hour	Off Peak Hours	suyama@ohsu.edu	Null	9.8300	2.00000	19.660
hour	Off Peak Hours	suyama@ohsu.edu	Null	9.8300	2.00000	19.660
hour	Training	suyama@ohsu.edu	Null	0.0000	1.00000	0.000
hour	Training	suyama@ohsu.edu	Null	0.0000	1.00000	0.000
hour	Training	suyama@ohsu.edu	Null	0.0000	1.50000	0.000
hour	Off Peak Hours	suyama@ohsu.edu	Null	9.8300	1.50000	14.750
hour	Off Peak Hours	suyama@ohsu.edu	Null	9.8300	1.00000	9.830
hour	Peak Hours	suyama@ohsu.edu	Null	29.5000	1.00000	29.500
hour	Off Peak Hours	suyama@ohsu.edu	Null	9.8300	1.75000	17.200
hour	Peak Hours	suyama@ohsu.edu	Null	29.5000	2.75000	81.130

The Metrics

OHSU USR Cores Contributions Unique Articles Found: 1,302

The Metrics

Article Totals by Core

Core	Article Count	V
Advanced Imaging Research Center Count		328
Advanced Light Microscopy Count		604
APOM Service Facility Count		38
Bioanalytical Shared Resource/Pharmacokinetics Core Count		165
Biophysics Shared Resources Core Count		13
Center for Radiochemistry Research Count		17
Flow Cytometry Count		613
Gene Profiling/RNA and DNA Services Shared Resource Count		759
Histopathology Shared Resource Count		252
Massively Parallel Sequencing Shared Resource Count		419
Medicinal Chemistry Core Count		23
Multiscale Microscopy Core (MMC) Count		259
Proteomics Shared Resource Count		456
Small Animal Research Imaging Core Count		143
Transgenic Mouse Models Core Count		248
Grand Count		<mark>4337</mark>

The Tools

It Takes a Village...

- 1. iLab
- 2. Excel
- 3. Tableau
- 4. Scopus
- 5. Python
- 6. Patient Humans

The Acknowledgements

- Hope Anderson USR Cores Operations Manager
- Marijane White OHSU Librarian
- Andy Chitty Believer

Oregon Health and Sciences University

Our messaging

- We are good at talking about what we can do for the community
- Not so good at communicating our impact

Examples of impact statements

OHSU Economic Impact Fact Sheet- 2019

OHSU Economic Impact Fact Sheet - 2019

Audience: state government, general public

FASEB Capitol Hill Day Fact Sheets

Audience: Lawmakers

University of Arizona Center for Innovation

Audience

State government Potential startups Investors

University Shared Resources Fact Sheet (Draft)

Audience:

- Core users
- Executive leadership
- Finance

University Shared Resources FY 2023 Impact Report

Research cores provide essential instruments and expertise, enabling investigators to expand their research by utilizing technologies that would otherwise be both prohibitively expensive and challenging to access. Funding for operating costs is sustained through a combination of researchers being charged a reduced rate for services which is made possible by financial investments provided by the institution.

OHSU is committed to ensuring USR Core services are sustainable for the long term as evidenced by significant investments throughout the years. These investments provide assistance with:

- Capital Equipment Purchases
- · Equipment Maintenance
- Software and Hardware Purchases
- · Administrative Support
- · Laboratory Supplies

- Service Contracts
- Equipment Maintenance
- Construction
- · Construction Expenses

USR Core Metrics - FY23

OHSU wet labs utilizing cores: 368	Value of grants supported: \$378M
USR managed operating expenses: \$10M	Researchers utilizing cores: 935
Capital goods value: > \$50M	Annual cost of service contracts: \$\$\$
Approximate cumulative core staff: 85	Number of awards supported: 1,426
Average researchers served/yr: 915	Average projects serviced/yr: 6,813

USR Cores

Comprised of 18 service centers across OHSU, member cores include:

Advanced Computing Center *
Advanced Imaging Research Center
Advanced Light Microscopy Core
Bioanalytical/Pharmacokinetics

Biophysics Core

Biostatistics and Design Program Center for Radiochemistry Research

DNA Services

Elemental Analysis Core

Flow Cytometry

Gene Profiling Shared Resource

Histopathology

Massively Parallel Sequencing Medicinal Chemistry Core

Publications Supported by Cores

1,302 articles were retrieved from the Scopus database that directly link to USR core services. The Scopus query matches Agency Award Numbers used for core service payments with Scopus records. Note that only a subset of Award Numbers could be used for this query, so the count of publications may be an underestimate.

Individual Core (Draft)

Audience

- Core Advisory Committee
- Core users

Advanced Light Microscopy Core FY 2023 Impact Report

The ALM Core helps the biomedical research community at OHSU take advantage of current methods in fluorescence microscopy. We train users on instruments best suited for their applications and sample preparations and support them in their efforts to quantify and analyze the acquired digital images. Our line-up of instrumentation and expertise covers a wide spectrum of applications, including imaging at the highest resolution possible and

The Advanced Light Microscopy Core has a number of different imaging setups that excel at different applications. We are largely a Zeiss microscope shop but are diversifying our instruments for FY24.

- Laser Scanning Confocal Microscopes (Zeiss LSM 980 Airyscan.2, Zeiss LSM 900 Airyscan.2, Zeiss LSM 880 Fast Airy)
- Structured Illumination Super-Resolution (Zeiss Elyra 7)
- Spinning Disk Confocal Microscopes (Yokogawa CSU-X1 or CSU-W1)
- Multiphoton Laser Scanning Setups (Zeiss LSM 7MP and Zeiss LSM 880 Fast Airy NLO)
- Lightsheet Microscope (Zeiss Lightsheet.Z1)
- Incubator Microscope (Essen IncuCyte ZOOM)
- Automated Slide Scanners (Zeiss Axioscan.Z1)
 Image Restoration by Deconvolution Microscope (GE/API
- Image Restoration by Deconvolution Microscope (GE/API CoreDv)
- Automated Fluorescence and Transmitted Light Microscope (Zeiss ApoTome.2)

Baby Steps: Start <u>somewhere</u>

- What can you show now?
 - iLab reports
 - Available user data
 - Central support information
- What can you find next that is low hanging fruit?
- What is your ultimate set of KPIs, Impact metrics?

Dr. Leo Marvin and Bob

Paradox of Choice analogy

- Maximizer: an individual who seeks out the most optimal (maximum utility) outcome when making a decision.
- This can lead to indecision, and buyers remorse.
- When it comes to data collection, we might be maximizers.
- We tend to want all the data to be completely verifiable, perfect.
- This can lead to paralysis!

Don't let perfect be the enemy of good

Statements that allow for qualification:

- We were able to find 1302 publications in our search for PI activities utilizing cores
- At least \$50 million in capital, with an estimated replacement value of...
- Value of grants that utilized cores \$378 Million

Hyperrealism vs. Impressionism

Diego Koi

vs. Claude Monet

Communication Methods

- Fact sheets
- News articles
- Web site
- Email outreach
- Town halls
- Presentations
- Educational activities
- Video
- Other?

And don't forget, who is your customer/audience?

Thank you!

Questions? Thoughts? Ideas?